Двоичная система счисления
0
AC () ÷
7 8 9 ×
4 5 6 -
1 2 3 +
0 00 , =

Двоичная система счисления

Содержание:
Что такое двоичная система счисления
Как перевести целое десятичное число в двоичную систему счисления
Как перевести десятичную дробь в двоичную систему счисления
Как перевести число из двоичной системы счисления в десятичную
Как перевести дробное двоичное число в десятичное
Таблица значений десятичных чисел от 0 до 100 в двоичной системе счисления

Что такое двоичная система счисления

Двоичная система счисления, является позиционной системой счисления, то есть имеется зависимость от позиции цифры в записи числа. Для записи числа в двоичной системе счисления используется две цифры 0 и 1. Для определения в какой системе счисления записано число, внизу, справа от числа ставят цифру, которая называется основанием системы счисления. Например, 10012 или 10001012

Если вам необходимо перевести число любой системы счисления в другую систему счисления, воспользуйтесь калькулятором систем счисления с подробным решением онлайн.


Как перевести целое десятичное число в двоичную систему счисления

Для того, чтобы перевести целое десятичное число в двоичную систему счисления нужно десятичное число делить на 2 до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.

Например, переведем число 17310 в двоичную систему счисления:

173 : 2 = 86 остаток: 1
86 : 2 = 43 остаток: 0
43 : 2 = 21 остаток: 1
21 : 2 = 10 остаток: 1
10 : 2 = 5 остаток: 0
5 : 2 = 2 остаток: 1
2 : 2 = 1 остаток: 0
1 : 2 = 0 остаток: 1

17310 = 101011012


Как перевести десятичную дробь в двоичную систему счисления

Для того чтобы перевести десятичную дробь в двоичную систему счисления необходимо сначала перевести целую часть десятичной дроби в двоичную систему счисления, а затем дробную часть, последовательно умножать на 2, до тех пор, пока в дробной части произведения не получиться ноль (результатом произведения будет целое число) или не будет достигнуто необходимое количество знаков после запятой. Если в результате умножения целая часть не равна нулю, тогда необходимо заменить значение целой части на ноль. В результате будет получено число из целых частей произведений, записанное слева направо.

Например, переведем десятичное число 5.7410 в двоичную систему счисления:

Переведем целую часть

5 : 2 = 2 остаток: 1
2 : 2 = 1 остаток: 0
1 : 2 = 0 остаток: 1
510 = 1012

Переведем дробную часть

0.74 · 2 = 1.48
0.48 · 2 = 0.96
0.96 · 2 = 1.92
0.92 · 2 = 1.84
0.84 · 2 = 1.68
0.68 · 2 = 1.36
0.36 · 2 = 0.72
0.72 · 2 = 1.44
0.44 · 2 = 0.88
0.88 · 2 = 1.76

0.7410 = 0.10111101012
5.7410 = 101.10111101012

Двоичные дроби, как и десятичные могут быть как конечными, так и бесконечными. Не всегда конечная десятичная дробь может быть представлена конечной двоичной. В данном примере получается бесконечная периодическая двоичная дробь, поэтому умножение на 2 можно производить бесконечное число раз и все равно дробная часть частного не будет равна нулю. В данном случае десятичная дробь 5.74 не может быть точно представлена в двоичной системе счисления. К примеру, дробь 2.510 может быть представлена в двоичной системе счисления в виде конечной 2.510 = 10.12.

Как перевести число из двоичной системы счисления в десятичную
Для того, чтобы перевести число из двоичной системы счисления в десятичную систему счисления, необходимо записать позиции каждой цифры в числе с права на лево начиная с нуля. Каждая позиция цифры будет степенью числа 2, так как система счисления 2-ичная. Необходимо последовательно умножить каждое число на 2 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции. Например, переведем теперь обратно число 101011012 в десятичную систему счисления:

Позиция в числе76543210
Число10101101

101011012 = 1 ⋅ 27 + 0 ⋅ 26 + 1 ⋅ 25 + 0 ⋅ 24 + 1 ⋅ 23 + 1 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20 = 17310



Как перевести дробное двоичное число в десятичное
Для того, чтобы перевести дробное двоичное число в десятичное, необходимо записать дробное двоичное число, убрав точку и затем сверху расставить индексы. Индексы в дробной части числа начинаются от -1 и продолжаются на уменьшение вправо, индексы в целой части начинаются с 0 и ставятся с права на лево по возрастанию. Каждая позиция цифры (индекс) будет степенью числа 2, так как система счисления 2-ичная. Необходимо последовательно умножить каждое число на 2 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.

Например, переведем дробное двоичное число 110.101 в десятичное:

Позиция в числе210-1-2-3
Число110101

110.1012 = 1 ⋅ 22 + 1 ⋅ 21 + 0 ⋅ 20 + 1 ⋅ 2-1 + 0 ⋅ 2-2 + 1 ⋅ 2-3 = 6.62510



Таблица значений десятичных чисел от 0 до 100 в двоичной системе счисления


Значение числа в десятичной системе счисленияЗначение числа в двоичной системе счисления
01002
11012
210102
310112
4101002
5101012
6101102
7101112
81010002
91010012
101010102
111010112
121011002
131011012
141011102
151011112
1610100002
1710100012
1810100102
1910100112
2010101002
2110101012
2210101102
2310101112
2410110002
2510110012
2610110102
2710110112
2810111002
2910111012
3010111102
3110111112
32101000002
33101000012
34101000102
35101000112
36101001002
37101001012
38101001102
39101001112
40101010002
41101010012
42101010102
43101010112
44101011002
45101011012
46101011102
47101011112
48101100002
49101100012
50101100102
Значение числа в десятичной системе счисленияЗначение числа в двоичной системе счисления
51101100112
52101101002
53101101012
54101101102
55101101112
56101110002
57101110012
58101110102
59101110112
60101111002
61101111012
62101111102
63101111112
641010000002
651010000012
661010000102
671010000112
681010001002
691010001012
701010001102
711010001112
721010010002
731010010012
741010010102
751010010112
761010011002
771010011012
781010011102
791010011112
801010100002
811010100012
821010100102
831010100112
841010101002
851010101012
861010101102
871010101112
881010110002
891010110012
901010110102
911010110112
921010111002
931010111012
941010111102
951010111112
961011000002
971011000012
981011000102
991011000112
1001011001002


Вам могут также быть полезны следующие сервисы
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Калькулятор сложения, вычитания, умножения и деления двоичных чисел
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четверичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления