Калькулятор НОД и НОК
При помощи данного калькулятора вы можете легко найти наибольший общий делитель НОД и
наименьшее общее кратное НОК благодаря подробно расписанному решению. Вы можете найти НОД и НОК для двух, трех и четырех чисел
Вам могут также быть полезны следующие сервисы |
Калькуляторы (Теория чисел) |
Калькулятор выражений |
Калькулятор со скобками |
Калькулятор разложения числа на простые множители |
Калькулятор НОД и НОК |
Калькулятор НОД и НОК по алгоритму Евклида |
Калькулятор НОД и НОК для любого количества чисел |
Представление многозначных чисел в виде суммы разрядных слагаемых |
Калькулятор деления числа в данном отношении |
Калькулятор процентов |
Калькулятор перевода числа с Е в десятичное |
Калькулятор нахождения факториала числа |
Калькулятор нахождения логарифма числа |
Калькулятор квадратных уравнений |
Калькулятор остатка от деления |
Калькулятор корней с решением |
Калькулятор нахождения периода десятичной дроби |
Дроби |
Калькулятор интервальных повторений |
Учим дроби наглядно |
Калькулятор сокращения дробей |
Калькулятор преобразования неправильной дроби в смешанную |
Калькулятор преобразования смешанной дроби в неправильную |
Калькулятор сложения, вычитания, умножения и деления дробей |
Калькулятор возведения дроби в степень |
Калькулятор перевода десятичной дроби в обыкновенную |
Калькулятор перевода обыкновенной дроби в десятичную |
Калькулятор сравнения дробей |
Калькулятор приведения дробей к общему знаменателю |
Калькуляторы (тригонометрия) |
Калькулятор синуса угла
|
Калькулятор косинуса угла
|
Калькулятор тангенса угла
|
Калькулятор котангенса угла |
Калькулятор секанса угла |
Калькулятор косеканса угла |
Калькулятор арксинуса угла
|
Калькулятор арккосинуса угла
|
Калькулятор арктангенса угла
|
Калькулятор арккотангенса угла |
Калькулятор арксеканса угла |
Калькулятор арккосеканса угла |
Калькуляторы систем счисления |
Калькулятор перевода чисел из арабских в римские и из римских в арабские |
Калькулятор перевода чисел в различные системы счисления |
Калькулятор сложения, вычитания, умножения и деления двоичных чисел |
Системы счисления теория |
N2 | Двоичная система счисления |
N3 | Троичная система счисления |
N4 | Четырехичная система счисления |
N5 | Пятеричная система счисления |
N6 | Шестеричная система счисления |
N7 | Семеричная система счисления |
N8 | Восьмеричная система счисления |
N9 | Девятеричная система счисления |
N11 | Одиннадцатиричная система счисления |
N12 | Двенадцатеричная система счисления |
N13 | Тринадцатеричная система счисления |
N14 | Четырнадцатеричная система счисления |
N15 | Пятнадцатеричная система счисления |
N16 | Шестнадцатеричная система счисления |
N17 | Семнадцатеричная система счисления |
N18 | Восемнадцатеричная система счисления |
N19 | Девятнадцатеричная система счисления |
N20 | Двадцатеричная система счисления |
N21 | Двадцатиодноричная система счисления |
N22 | Двадцатидвухричная система счисления |
N23 | Двадцатитрехричная система счисления |
N24 | Двадцатичетырехричная система счисления |
N25 | Двадцатипятеричная система счисления |
N26 | Двадцатишестеричная система счисления |
N27 | Двадцатисемеричная система счисления |
N28 | Двадцативосьмеричная система счисления |
N29 | Двадцатидевятиричная система счисления |
N30 | Тридцатиричная система счисления |
N31 | Тридцатиодноричная система счисления |
N32 | Тридцатидвухричная система счисления |
N33 | Тридцатитрехричная система счисления |
N34 | Тридцатичетырехричная система счисления |
N35 | Тридцатипятиричная система счисления |
N36 | Тридцатишестиричная система счисления |
Калькуляторы площади геометрических фигур |
Площадь квадрата |
Площадь прямоугольника |
Калькуляторы (Комбинаторика) |
Калькулятор нахождения числа перестановок из n элементов |
Калькулятор нахождения числа сочетаний из n элементов |
Калькулятор нахождения числа размещений из n элементов |
Калькуляторы линейная алгебра и аналитическая геометрия |
Калькулятор сложения и вычитания матриц |
Калькулятор умножения матриц |
Калькулятор транспонирование матрицы |
Калькулятор нахождения определителя (детерминанта) матрицы |
Калькулятор нахождения обратной матрицы |
Длина отрезка. Онлайн калькулятор расстояния между точками |
Онлайн калькулятор нахождения координат вектора по двум точкам |
Калькулятор нахождения модуля (длины) вектора |
Калькулятор сложения и вычитания векторов |
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами |
Калькулятор скалярного произведения векторов через координаты |
Калькулятор векторного произведения векторов через координаты |
Калькулятор смешанного произведения векторов |
Калькулятор умножения вектора на число |
Калькулятор нахождения угла между векторами |
Калькулятор проверки коллинеарности векторов |
Калькулятор проверки компланарности векторов |
Генератор Pdf с примерами |
Тренажёры решения примеров |
Тренажер сложения |
Тренажёр вычитания |
Тренажёр умножения |
Тренажёр деления |
Тренажёр таблицы умножения |
Тренажер счета для дошкольников |
Тренажер счета на внимательность для дошкольников |
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. |
Тренажер решения примеров с разными действиями |
Тренажёры решения столбиком |
Тренажёр сложения столбиком |
Тренажёр вычитания столбиком |
Тренажёр умножения столбиком |
Тренажёр деления столбиком с остатком |
Калькуляторы решения столбиком |
Калькулятор сложения, вычитания, умножения и деления столбиком |
Калькулятор деления столбиком с остатком |
Конвекторы величин |
Конвертер единиц длины |
Конвектор единиц скорости |
Конвектор единиц ускорения |
Калькуляторы (физика) |
Механика |
Калькулятор вычисления скорости, времени и расстояния |
Калькулятор вычисления ускорения, скорости и перемещения |
Калькулятор вычисления времени движения |
Калькулятор времени |
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения. |
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния. |
Импульс тела. Калькулятор вычисления импульса, массы и скорости |
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы. |
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения |
Оптика |
Калькулятор отражения и преломления света |
Электричество и магнетизм |
Калькулятор Закона Ома |
Калькулятор Закона Кулона |
Калькулятор напряженности E электрического поля |
Калькулятор нахождения точечного электрического заряда Q |
Калькулятор нахождения силы F действующей на заряд q |
Калькулятор вычисления расстояния r от заряда q |
Калькулятор вычисления потенциальной энергии W заряда q |
Калькулятор вычисления потенциала φ электростатического поля |
Калькулятор вычисления электроемкости C проводника и сферы |
Конденсаторы |
Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе |
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе |
Калькулятор вычисления энергии W заряженного конденсатора |
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов |
Калькуляторы по астрономии |
Вес тела на других планетах |
Ускорение свободного падения на планетах Солнечной системы и их спутниках |
Генераторы |
Генератор примеров по математике |
Генератор случайных чисел |
Генератор паролей |
Найдем наибольший общий делитель НОД (36 ; 24)
Этапы решения
Способ №1
1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
36 - составное число
24 - составное число
Разложим число 36 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
36 : 2 = 18 - делится на простое число 2
18 : 2 = 9 - делится на простое число 2
9 : 3 = 3 - делится на простое число 3.
Завершаем деление, так как 3 простое число
Разложим число 24 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
24 : 2 = 12 - делится на простое число 2
12 : 2 = 6 - делится на простое число 2
6 : 2 = 3 - делится на простое число 2.
Завершаем деление, так как 3 простое число
2) Выделим синим цветом и выпишем общие множители
36 = 2 ⋅ 2 ⋅ 3 ⋅ 3
24 = 2 ⋅ 2 ⋅ 2 ⋅ 3
Общие множители (36 ; 24) : 2, 2, 3
3) Теперь, чтобы найти НОД нужно перемножить общие множители
Ответ: НОД (36 ; 24) = 2 ∙ 2 ∙ 3 = 12
Способ №2
1) Найдем все возможные делители чисел (36 ; 24). Для этого поочередно разделим число 36 на делители от 1 до 36, число 24 на делители от 1 до 24. Если число делится без остатка, то делитель запишем в список делителей.
Для числа 36 выпишем все случаи, когда оно делится без остатка:
36 : 1 = 36;36 : 2 = 18;36 : 3 = 12;36 : 4 = 9;36 : 6 = 6;36 : 9 = 4;36 : 12 = 3;36 : 18 = 2;36 : 36 = 1;
Для числа 24 выпишем все случаи, когда оно делится без остатка:
24 : 1 = 24;24 : 2 = 12;24 : 3 = 8;24 : 4 = 6;24 : 6 = 4;24 : 8 = 3;24 : 12 = 2;24 : 24 = 1;
2) Выпишем все общие делители чисел (36 ; 24) и выделим зеленым цветом самы большой, это и будет наибольший общий делитель НОД чисел (36 ; 24)
Общие делители чисел (36 ; 24): 1, 2, 3, 4, 6, 12
Ответ: НОД (36 ; 24) = 12
Перейти в калькулятор
Найдем наименьшее общее кратное НОК (52 ; 49)
Этапы решения
Способ №1
1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
52 - составное число
49 - составное число
Разложим число 52 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
52 : 2 = 26 - делится на простое число 2
26 : 2 = 13 - делится на простое число 2.
Завершаем деление, так как 13 простое число
Разложим число 49 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
49 : 7 = 7 - делится на простое число 7.
Завершаем деление, так как 7 простое число
2) Прежде всего запишем множители самого большого числа, а затем меньшего числа. Найдем недостающие множители, выделим синим цветом в разложении меньшего числа множители, которые не вошли в разложение большего числа.
52 = 2 ∙ 2 ∙ 13
49 = 7 ∙ 7
3) Теперь, чтобы найти НОК нужно перемножить множители большего числа с недостающими множителями, которые выделены синим цветом
НОК (52 ; 49) = 2 ∙ 2 ∙ 13 ∙ 7 ∙ 7 = 2548
Способ №2
1) Найдем все возможные кратные чисел (52 ; 49). Для этого поочередно умножим число 52 на числа от 1 до 49, число 49 на числа от 1 до 52.
Выделим все кратные числа 52 зеленым цветом:
52 ∙ 1 = 52; 52 ∙ 2 = 104; 52 ∙ 3 = 156; 52 ∙ 4 = 208;
52 ∙ 5 = 260; 52 ∙ 6 = 312; 52 ∙ 7 = 364; 52 ∙ 8 = 416;
52 ∙ 9 = 468; 52 ∙ 10 = 520; 52 ∙ 11 = 572; 52 ∙ 12 = 624;
52 ∙ 13 = 676; 52 ∙ 14 = 728; 52 ∙ 15 = 780; 52 ∙ 16 = 832;
52 ∙ 17 = 884; 52 ∙ 18 = 936; 52 ∙ 19 = 988; 52 ∙ 20 = 1040;
52 ∙ 21 = 1092; 52 ∙ 22 = 1144; 52 ∙ 23 = 1196; 52 ∙ 24 = 1248;
52 ∙ 25 = 1300; 52 ∙ 26 = 1352; 52 ∙ 27 = 1404; 52 ∙ 28 = 1456;
52 ∙ 29 = 1508; 52 ∙ 30 = 1560; 52 ∙ 31 = 1612; 52 ∙ 32 = 1664;
52 ∙ 33 = 1716; 52 ∙ 34 = 1768; 52 ∙ 35 = 1820; 52 ∙ 36 = 1872;
52 ∙ 37 = 1924; 52 ∙ 38 = 1976; 52 ∙ 39 = 2028; 52 ∙ 40 = 2080;
52 ∙ 41 = 2132; 52 ∙ 42 = 2184; 52 ∙ 43 = 2236; 52 ∙ 44 = 2288;
52 ∙ 45 = 2340; 52 ∙ 46 = 2392; 52 ∙ 47 = 2444; 52 ∙ 48 = 2496;
52 ∙ 49 = 2548;
Выделим все кратные числа 49 зеленым цветом:
49 ∙ 1 = 49; 49 ∙ 2 = 98; 49 ∙ 3 = 147; 49 ∙ 4 = 196;
49 ∙ 5 = 245; 49 ∙ 6 = 294; 49 ∙ 7 = 343; 49 ∙ 8 = 392;
49 ∙ 9 = 441; 49 ∙ 10 = 490; 49 ∙ 11 = 539; 49 ∙ 12 = 588;
49 ∙ 13 = 637; 49 ∙ 14 = 686; 49 ∙ 15 = 735; 49 ∙ 16 = 784;
49 ∙ 17 = 833; 49 ∙ 18 = 882; 49 ∙ 19 = 931; 49 ∙ 20 = 980;
49 ∙ 21 = 1029; 49 ∙ 22 = 1078; 49 ∙ 23 = 1127; 49 ∙ 24 = 1176;
49 ∙ 25 = 1225; 49 ∙ 26 = 1274; 49 ∙ 27 = 1323; 49 ∙ 28 = 1372;
49 ∙ 29 = 1421; 49 ∙ 30 = 1470; 49 ∙ 31 = 1519; 49 ∙ 32 = 1568;
49 ∙ 33 = 1617; 49 ∙ 34 = 1666; 49 ∙ 35 = 1715; 49 ∙ 36 = 1764;
49 ∙ 37 = 1813; 49 ∙ 38 = 1862; 49 ∙ 39 = 1911; 49 ∙ 40 = 1960;
49 ∙ 41 = 2009; 49 ∙ 42 = 2058; 49 ∙ 43 = 2107; 49 ∙ 44 = 2156;
49 ∙ 45 = 2205; 49 ∙ 46 = 2254; 49 ∙ 47 = 2303; 49 ∙ 48 = 2352;
49 ∙ 49 = 2401; 49 ∙ 50 = 2450; 49 ∙ 51 = 2499; 49 ∙ 52 = 2548;
2) Выпишем все общие кратные чисел (52 ; 49) и выделим зеленым цветом самое маленькое, это и будет наименьшим общим кратным чисел (52 ; 49).
Общие кратные чисел (52 ; 49): 2548
Ответ: НОК (52 ; 49) = 2548
Перейти в калькулятор