Онлайн калькулятор систем счисления с решением онлайн

Продолжая использовать данный сайт, Вы:
- Даете согласие на обработку персональных данных сервисами: Google Analytics, Google Adsense и Яндекс Метрика.
- Согласны с условиями использования данного сайта и его политикой конфиденциальности.
- Соглашаетесь с тем, что наши партнеры будут собирать связанную с вами информацию и использовать файлы cookie для персонализации рекламы и оценки ее эффективности (Политика конфиденциальности GDPR).
Если вы не хотите, чтобы Ваши данные обрабатывались или не согласны с хотя бы одним из вышеперечисленных пунктов, Вы должны покинуть данный сайт.

0
AC +/- ÷
7 8 9 ×
4 5 6 -
1 2 3 +
0 00 , =

Калькулятор систем счисления с решением

При помощи данного калькулятора вы можете переводить целые и дробные числа из одной системы счисления в другую и получить подробное решение. Допустимо использовать основание системы счисление от 2-чной до 36-чной.

Исходное число
Система счисления исходного числа
Система счисления для перевода
Количество знаков после запятой (для чисел с дробной частью)
Перейти к примерам перевода чисел в различные системы счисления
Вам могут также быть полезны следующие сервисы
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькуляторы (Теория чисел)
Калькулятор со скобками
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Линейная алгебра (Матричные калькуляторы)
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер сложения
Тренажёр вычитания
Тренажёр умножения
Тренажёр деления
Тренажёр таблицы умножения
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения столбиком
Калькулятор вычитания столбиком
Калькулятор умножения столбиком
Калькулятор деления столбиком с остатком

Примеры перевода чисел в различные системы счисления

Пример №1
Переведем число 12 из десятичной в двоичную систему счисления
1210 = 11002
Решение

Переведем число 1210 в 2-ичную систему счисления, при помощи последовательного деления на 2, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.

12 : 2 = 6 остаток: 0
6 : 2 = 3 остаток: 0
3 : 2 = 1 остаток: 1
1 : 2 = 0 остаток: 1

1210 = 11002
Перейти в калькулятор систем счисления

Пример №2
Переведем число 12.3 из десятичной в двоичную систему счисления
12.310 = 1100.0100110011001100110011001100112
Решение

Переведем целую часть 12 числа 12.310 в 2-ичную систему счисления, при помощи последовательного деления на 2, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.

12 : 2 = 6 остаток: 0
6 : 2 = 3 остаток: 0
3 : 2 = 1 остаток: 1
1 : 2 = 0 остаток: 1

1210 = 11002

Переведем дробную часть 0.3 числа 12.310 в 2-ичную систему счисления, при помощи последовательного умножения на 2, до тех пор, пока в дробной части произведения не получиться ноль или не будет достигнуто необходимое количество знаков после запятой. Если в результате умножения целая часть не равна нулю, тогда необходимо заменить значение целой части на ноль. В результате будет получено число из целых частей произведений, записанное слева направо.

0.3·2 = 0.6
0.6·2 = 1.2
0.2·2 = 0.4
0.4·2 = 0.8
0.8·2 = 1.6
0.6·2 = 1.2
0.2·2 = 0.4
0.4·2 = 0.8
0.8·2 = 1.6
0.6·2 = 1.2
0.2·2 = 0.4
0.4·2 = 0.8
0.8·2 = 1.6
0.6·2 = 1.2
0.2·2 = 0.4
0.4·2 = 0.8
0.8·2 = 1.6
0.6·2 = 1.2
0.2·2 = 0.4
0.4·2 = 0.8
0.8·2 = 1.6
0.6·2 = 1.2
0.2·2 = 0.4
0.4·2 = 0.8
0.8·2 = 1.6
0.6·2 = 1.2
0.2·2 = 0.4
0.4·2 = 0.8
0.8·2 = 1.6
0.6·2 = 1.2

0.310 = 0.0100110011001100110011001100112
12.310 = 1100.0100110011001100110011001100112
Перейти в калькулятор систем счисления

Пример №3
Переведем число 10011 из двоичной системы в десятичную систему счисления
100112 = 1910
Решение

Переведем число 100112 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числе с права налево, начиная с нуля

Позиция в числе43210
Число10011

Каждая позиция цифры будет степенью числа 2, так как система счисления 2-ичная. Необходимо последовательно умножить каждое число 100112 на 2 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.

100112 = 1 ⋅ 24 + 0 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 1910

Перейти в калькулятор систем счисления

Пример №4
Переведем число 11.101 из двоичной системы в десятичную систему счисления
11.1012 = 3.62510
Решение

Переведем число 11.1012 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числе

Позиция в числе10-1-2-3
Число11101

Каждая позиция цифры будет степенью числа 2, так как система счисления 2-ичная. Необходимо последовательно умножить каждое число 11.1012 на 2 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.

11.1012 = 1 ⋅ 21 + 1 ⋅ 20 + 1 ⋅ 2-1 + 0 ⋅ 2-2 + 1 ⋅ 2-3 = 3.62510

Перейти в калькулятор систем счисления

Пример №5
Переведем число 1583 из десятичной системы в шестнадцатеричную систему счисления
158310 = 62F16
Решение

Переведем число 158310 в 16-ичную систему счисления, при помощи последовательного деления на 16, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.

1583 : 16 = 98 остаток: 15,   15 = F
98 : 16 = 6 остаток: 2
6 : 16 = 0 остаток: 6

158310 = 62F16
Перейти в калькулятор систем счисления

Пример №6
Переведем число 1583.56 из десятичной системы в шестнадцатеричную систему счисления
1583.5610 = 62F.8F5C28F5C28F5C28F5C28F5C28F5C216
Решение

Переведем целую часть 1583 числа 1583.5610 в 16-ичную систему счисления, при помощи последовательного деления на 16, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.

1583 : 16 = 98 остаток: 15,   15 = F
98 : 16 = 6 остаток: 2
6 : 16 = 0 остаток: 6

158310 = 62F16

Переведем дробную часть 0.56 числа 1583.5610 в 16-ичную систему счисления, при помощи последовательного умножения на 16, до тех пор, пока в дробной части произведения не получиться ноль или не будет достигнуто необходимое количество знаков после запятой. Если в результате умножения целая часть не равна нулю, тогда необходимо заменить значение целой части на ноль. В результате будет получено число из целых частей произведений, записанное слева направо.

0.56·16 = 8.96
0.96·16 = 15.36,   15 = F
0.36·16 = 5.76
0.76·16 = 12.16,   12 = C
0.16·16 = 2.56
0.56·16 = 8.96
0.96·16 = 15.36,   15 = F
0.36·16 = 5.76
0.76·16 = 12.16,   12 = C
0.16·16 = 2.56
0.56·16 = 8.96
0.96·16 = 15.36,   15 = F
0.36·16 = 5.76
0.76·16 = 12.16,   12 = C
0.16·16 = 2.56
0.56·16 = 8.96
0.96·16 = 15.36,   15 = F
0.36·16 = 5.76
0.76·16 = 12.16,   12 = C
0.16·16 = 2.56
0.56·16 = 8.96
0.96·16 = 15.36,   15 = F
0.36·16 = 5.76
0.76·16 = 12.16,   12 = C
0.16·16 = 2.56
0.56·16 = 8.96
0.96·16 = 15.36,   15 = F
0.36·16 = 5.76
0.76·16 = 12.16,   12 = C
0.16·16 = 2.56

0.5610 = 0.8F5C28F5C28F5C28F5C28F5C28F5C216
1583.5610 = 62F.8F5C28F5C28F5C28F5C28F5C28F5C216
Перейти в калькулятор систем счисления

Пример №7
Переведем число A12DCF из шестнадцатеричной системы в десятичную систему счисления
A12DCF16 = 1056302310
Решение

Переведем число A12DCF16 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числе с права налево, начиная с нуля

Позиция в числе543210
ЧислоA12DCF

Каждая позиция цифры будет степенью числа 16, так как система счисления 16-ичная. Необходимо последовательно умножить каждое число A12DCF16 на 16 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.
A16 = 1010
D16 = 1310
C16 = 1210
F16 = 1510

A12DCF16 = 10 ⋅ 165 + 1 ⋅ 164 + 2 ⋅ 163 + 13 ⋅ 162 + 12 ⋅ 161 + 15 ⋅ 160 = 1056302310

Перейти в калькулятор систем счисления

Пример №8
Переведем число A12DCF.12A из шестнадцатеричной системы в десятичную систему счисления
A12DCF.12A16 = 10563023.0727539062510
Решение

Переведем число A12DCF.12A16 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числе

Позиция в числе543210-1-2-3
ЧислоA12DCF12A

Каждая позиция цифры будет степенью числа 16, так как система счисления 16-ичная. Необходимо последовательно умножить каждое число A12DCF.12A16 на 16 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.
A16 = 1010
D16 = 1310
C16 = 1210
F16 = 1510

A12DCF.12A16 = 10 ⋅ 165 + 1 ⋅ 164 + 2 ⋅ 163 + 13 ⋅ 162 + 12 ⋅ 161 + 15 ⋅ 160 + 1 ⋅ 16-1 + 2 ⋅ 16-2 + 10 ⋅ 16-3 = 10563023.0727539062510

Перейти в калькулятор систем счисления

Пример №9
Переведем число 1010100011 из двоичной системы в шестнадцатеричную систему счисления
10101000112 = 2A316
Решение

Переведем число 10101000112 в десятичную систему счисления, для этого сначала запишем позицию каждой цифры в числе с права налево, начиная с нуля

Позиция в числе9876543210
Число1010100011

Каждая позиция цифры будет степенью числа 2, так как система счисления 2-ичная. Необходимо последовательно умножить каждое число 10101000112 на 2 в степени соответствующей позиции числа и затем сложить с последующим произведением следующего числа в степени соответствующей его позиции.

10101000112 = 1 ⋅ 29 + 0 ⋅ 28 + 1 ⋅ 27 + 0 ⋅ 26 + 1 ⋅ 25 + 0 ⋅ 24 + 0 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 67510

Переведем число 67510 в 16-ичную систему счисления, при помощи последовательного деления на 16, до тех пор, пока неполное частное не будет равно нулю. В результате будет получено число из остатков деления записанное справа налево.

675 : 16 = 42 остаток: 3
42 : 16 = 2 остаток: 10,   10 = A
2 : 16 = 0 остаток: 2

67510 = 2A316